Evaluate expressions 1 through 28 and write the answers in their simplest form.
-
\[
3(x-1)-x(x-5)
\]
-
\[
a[5(a-3)-3(a+1)]
\]
-
\[
a^{-1}(a+3)
\]
-
\[
(2b)^{-1}(2b-8)
\]
-
\[
(ab)^{-1}(b-a)
\]
-
\[
(-2ab)^{-1}(4a-10b)
\]
-
\[
\left( \frac{8}{15} \times \frac{6}{7} \right) \div \frac{4}{7}
\]
-
\[
\left( \frac{5a}{12} \times 3b \right) \div \frac{10ab}{4}
\]
-
\[
12ab \div \left( \frac{3a}{2} \times \frac{4}{3b} \right)
\]
-
\[
\left( \frac{8a}{5b} \times \frac{a}{10b} \right) \div \frac{2a}{15b}
\]
-
\[
\frac{x}{8y} – \frac{x}{3y}
\]
-
\[
\frac{3}{5x^2} + \frac{1}{2x}
\]
-
\[
\frac{x}{a}+\frac{x}{ab}
\]
-
\[
3\left( \frac{b}{3a} – \frac{2a}{b} \right)- \frac{a^2+b^2}{ab}
\]
-
\[
-\frac{5}{21}+1-\frac{3}{7}
\]
-
\[
1-\left( -\frac{3}{8}+\frac{2}{3} \right)
\]
-
\[
\left( \frac{1}{5}-2 \right)- \left( \frac{1}{7}-2 \right)
\]
-
\[
\frac{9}{10} \left( -\frac{5}{6} \right)
\]
-
\[
\left( -\frac{3}{4} \right) \left( -\frac{5}{27} \right) \left( -\frac{2}{25} \right)
\]
-
\[
(-5)\left(- \frac{1}{5} \right) \left(\frac{-3}{4}+\frac{-2}{-3} \right)
\]
-
\[
\left( \frac{1}{5}-\frac{2}{3} \right) \div \frac{1}{15}
\]
-
\[
\left( 4 \div \frac{8}{5} \right)-\left( \frac{9}{10} \div \frac{3}{2} \right)
\]
-
\[
\left( \frac{1}{3} + \frac{2}{5} +\frac{1}{30} \right) \div \frac{23}{30}
\]
-
\[
\cfrac{\frac{1}{2}-\frac{3}{4}}{\frac{1}{2}+\frac{3}{4}}
\]
-
\[
\left( \frac{1}{8}+\frac{3}{4} \right) \left( 1-\frac{5}{12} \right)^{-1}
\]
-
\[
\cfrac{\frac{4a}{5}-2a}{\frac{3a}{10}-3a}
\]
-
\[
\cfrac{\frac{1}{5a}-\frac{1}{6a}}{\frac{1}{6b}-\frac{1}{7b}}
\]
-
\[
\left[ \frac{5}{9a} \div \frac{10}{3a}- \frac{1}{4} \right] \div \left[ \frac{4y}{5x}-\frac{y}{2x} \right]
\]
Simplify the expressions from 29 to 50, using positive exponents for all answers.
-
\[
(2^2 \times 2^3)^2
\]
-
\[
\left( \frac{3}{4} \right)^0
\]
-
\[
\left( \frac{3}{4} \right)^{-1}
\]
-
\[
5^{-1}\times \left( \frac{5}{6} \right)^2
\]
-
\[
\left( \frac{2}{3} \right)^{-4} \div 3^{-3}
\]
-
\[
\left[ \left( \frac{2}{3} \right)^2 \right]^3
\]
-
\[
\left( \frac{4}{5} \right)^1+\left( \frac{4}{5}\right)^0
\]
-
\[
\frac{3^{-2} \times 3^3}{2^{-3}}
\]
-
\[
\left( \frac{2}{3} \right)^{-2}+\left( \frac{2}{3} \right)^{-1}
\]
-
\[
\frac{2^3\times3^{-4}\times4^5}{2^5\times3^{-5}\times4^2}
\]
-
\[
(5^{-2}\times 2^5)\times(2^{-2} \times 5^4)^{-2}
\]
-
\[
\left(3^{}-3a^3b^{-2} \right) \left( 9a^{-4}b^{-5} \right)
\]
-
\[
\left( 5x^2y \right)^0 \left( 4^2x^{-2}y^{-5} \right)
\]
-
\[
\left( 4x^0 \right)^2 \div \left( -2x^{-1}y^4 \right)^{-3}
\]
-
\[
\left( \frac{3a^{-3}b^2}{9ab^{-1}} \right)^{-2}
\]
-
\[
\left(\frac{4xy^{-2}}{2x^{-1}y^2} \right)^{-3}
\]
-
\[
\left( \frac{5^3m^0n^{-2}}{4^3m^3n^{-5}} \right) \left( \frac{5^3m^{-1}n}{4^2m^2n^{-2}} \right)^{-1}
\]
-
\[
\left( a^{-2}-b^{-2} \right)^{-1}
\]
-
\[
\frac{3}{7x^{-3}}-\frac{2}{21x^{-1}}
\]
-
\[
\left( \frac{x}{2y} \right)^3 \div \left( \frac{4y}{x} \div \frac{2}{3y^3} \right)^{-1}
\]
-
\[
\left( \frac{2}{x}+8x^{-1} \right)^{-1} \div 5^{-1}x
\]
-
\[
\left(\frac{3}{x^2}-5x^{-2} \right)^{-1} \div \left( \frac{x^3}{9}+\frac{1}{6x^{-3}} \right)
\]
-
Write the following numbers using scientific notation.
-
a light year in kilometers: 9,440,000,000.000 \(km\).
-
the electron diameter: 0.0000000000004 \(cm\).
-
the Earth population in 2002: 6,251,000,000 inhabitants.
-
the neutron mass: 0.000000000000000000000167 \(kg\).
-
Write the following numbers in standard decimal notation:
-
the distance between the earth to the moon: 4.624 × 105 \(km\).
-
the length of the X ray wave: 4.92 × 10−11 \(m\).
-
Fraction properties. Prove that:
-
\[
\frac{ac}{bc}=\frac{a}{b}, c \neq 0
\]
-
\[
\frac{a}{b}= \frac{c}{d} \Rightarrow ad=bc
\]
-
\[
\frac{-a}{b}= \frac{a}{-b}= -\frac{a}{b}
\]
-
Exponent laws. If \(a\) and \(b\) are real numbers; and \(m\), \(n\) are integers, prove that:
-
\[
\frac{a^n}{a^m}=a^{n-m}
\]
-
\[
\left(a^n \right)^m=a^{nm}
\]
-
\[
\left( ab \right)^n=a^nb^n
\]
-
\[
\frac{a^n}{b^n}=\frac{b^{-n}}{a^{-n}}
\]