In exercises 1 through 6, evaluate the given expressions without using a calculator.
-
\[
\sin^{-1} \left( \sqrt{3}/2 \right)
\]
-
\[
\sec^{-1} \left( -\sqrt{2} \right)
\]
-
\[
\cos^{-1}(-1)
\]
-
\[
\tan^{-1} \left( -\sqrt{3} \right)
\]
-
\[
\cot^{-1}(-1)
\]
-
\[
\text{cosec}^{-1}(-2)
\]
-
Given \(y=\sin^{-1}
\left( \frac{1}{3} \right)\), find the precise value of:
-
\[
\cos y
\]
-
\[
\tan y
\]
-
\[
\cot y
\]
-
\[
\sec y
\]
-
\[
\text{cosec } y
\]
-
Given \(y=\sec^{-1}\left(
\frac{\sqrt{5}}{2}
\right)\), find the precise value of:
-
\[
\sin y
\]
-
\[
\cos y
\]
-
\[
\tan y
\]
-
\[
\cot y
\]
-
\[
\text{cosec } y
\]
-
Given \(y=\tan^{-1}(-3)\), find the precise value of:
-
\[
\sin y
\]
-
\[
\cos y
\]
-
\[
\cot y
\]
-
\[
\sec y
\]
-
\[
\text{cosec } y
\]
In exercises 10 through 13, find the value of the expression.
-
\[
\cos^{-1} \left( \sqrt{ \frac{3}{2}} \right)
\]
-
\[
\text{cosec} \left( \tan^{-1} (-2) \right)
\]
-
\[
\sin \left( \tan^{-1} \left( – \frac{3}{4} \right) \right)
\]
-
\[
\tan \left( \sin^{-1} \left( – \frac{3}{4} \right) \right)
\]
In the exercises 14 and 15, find the value of the expression.
-
\[
\sin^{-1} \left( \cos \left( -\frac{\pi}{6} \right) \right)
\]
-
\[
\tan^{-1} \left( \tan \left( \frac{4 \pi}{3} \right) \right)
\]
In exercises 16 through 19, find the value of the expression.
-
\[
\cos \left( \sin^{-1} \left( \frac{1}{3} \right) + \tan^{-1} \left( \frac{1}{3} \right) \right)
\]
-
\[
\sin \left( 2\cos^{-1} \left( \frac{1}{3} \right) \right)
\]
-
\[
\tan \left( 2 \sin^{-1} \left( -\frac{\sqrt{3}}{2} \right) \right)
\]
-
\[
\cos \left( \left( \frac{1}{2} \right) \sin^{-1} \left( \frac{5}{13} \right)
\right)
\]
In exercises 20 through 23, find the algebraic expression.
-
\[
\sin \left( \tan^{-1}(x) \right)
\]
-
\[
\tan \left( \sin^{-1}(x) \right)
\]
-
\[
\sin \left( \cos^{-1} \left( \frac{x}{2} \right) \right)
\]
-
\[
\cos \left( \left( \frac{1}{2} \right) \cos^{-1}(x) \right)
\]
Solve the following equations:
-
\[
\sin^{-1} \left( \frac{x}{2} \right) = -\frac{1}{2}
\]
-
\[
\sin^{-1} \left( \sqrt{2x} \right) = \cos^{-1} x
\]
-
\[
\tan^{2} x + 9 \tan x – 12 = 0 \, , \quad -\frac{\pi}{2} < x < \frac{\pi}{2}
\]
\[
\begin{aligned}
&\tan^{2} x + 9 \tan x – 12 = 0 \, ,
\\[1em]
&\hspace{6em} -\frac{\pi}{2} < x < \frac{\pi}{2}
\end{aligned}
\]