Exercise 12
A set has \(n\) different elements and an element \(a\), different from the others, is added to the set. If an element is drawn at random from the final set, the probability of it being element \(a\) is:
-
\(1\)
-
\( \cfrac{1}{n + 1} \)
-
\(n\)
-
\(0\)
-
\( \cfrac{1}{n} \)
Try to solve it before checking the answer.
\( \cfrac{1}{n + 1} \)
Indeed, The probability of picking element \(a\) is:
\[
\cfrac{
\text{Nº de resultados exitosos}
}{
\text{Nº de resultados posibles}
} = \boldsymbol{ \frac{1}{ n + 1 } }
\]
\cfrac{
\text{Nº de resultados exitosos}
}{
\text{Nº de resultados posibles}
} = \boldsymbol{ \frac{1}{ n + 1 } }
\]
\[
\cfrac{
\text{Number of successful outcomes}
}{
\text{Number of possible outcomes}
} = \boldsymbol{ \frac{1}{ n + 1 } }
\]
\cfrac{
\text{Number of successful outcomes}
}{
\text{Number of possible outcomes}
} = \boldsymbol{ \frac{1}{ n + 1 } }
\]