Exercise 24

The solution set of the inequation \( \left| \cfrac{2x + 1}{3} \right| < 5 \) is the following:

The solution set of the inequation:

\[ \left| \cfrac{2x + 1}{3} \right| < 5, \]

is the following:

  1. \( ( -\infty, \, 7 ) \)

  2. \( ( -8, +\infty ) \)

  3. \( ( -\infty, -8 ) \)

  4. \( ( -7, \, 8 ) \)

  5. \( ( -8, \, 7 ) \)

Try to solve it before checking the answer.
  1. \( ( -8, \, 7 ) \)

Indeed:

\[ \begin{aligned} \left| \frac{2x + 1}{3} \right| < 5 &\Leftrightarrow -5 < \frac{2x + 1}{3} < 5 \\ &\hspace{1em}\text{Inequalities} \\[1.5em] &\Leftrightarrow -15 < 2x + 1 < 15 \\ &\hspace{1em}\text{multiplying by 3} \\[1.5em] &\Leftrightarrow -16 < 2x < 14 \\ &\hspace{1em}\text{adding -1} \\[1.5em] &\Leftrightarrow -8 < x < 7 \\ &\hspace{1em}\text{dividing by 2} \\[1.5em] &\Leftrightarrow \boldsymbol{ x \in (-8, \, 7) } \end{aligned} \]
\[ \begin{aligned} \left| \frac{2x + 1}{3} \right| < 5 &\Leftrightarrow -5 < \frac{2x + 1}{3} < 5 & \text{Inequalities} \\[.5em] &\Leftrightarrow -15 < 2x + 1 < 15 &\text{multiplying by 3} \\[.5em] &\Leftrightarrow -16 < 2x < 14 &\text{adding -1} \\[.5em] &\Leftrightarrow -8 < x < 7 &\text{dividing by 2} \\[.5em] &\Leftrightarrow \boldsymbol{ x \in (-8, \, 7) } \end{aligned} \]