The expression \( \cfrac{x - 5}{\sqrt{x - 5}} \) equals:
-
\( 1 \)
-
\( \cfrac{ \sqrt{ (x - 5)^3 } }{x - 5} \)
-
\( \cfrac{2x}{x - 5} \)
-
\( \cfrac{x + 5}{x - 5} \)
-
\( \cfrac{x^2 - 25}{x - 5} \)
Try to solve it before checking the answer.
-
\( \cfrac{ \sqrt{ (x – 5)^3 } }{x – 5} \)
Let’s rationalize the denominator by multiplying and dividing by \( \sqrt{ x – 5 } \):