Exercise 44

Solving the equation: \( \sqrt{ 5 (x + 33) } = x + 3 \), yields the following solution set:

  1. \( \{ 12, \, 13 \} \)

  2. \( \{ -12, \, 13 \} \)

  3. \( \{ 12, -13 \} \)

  4. \( \{ -12, -13 \} \)

  5. \( \{ 12 \} \)

Try to solve it before checking the answer.
  1. \( \{ 12, -13 \} \)

\[ \begin{aligned} &\sqrt{ 5 (x + 33) } = x + 3 \\[.5em] &\hspace{4em}\Leftrightarrow 5 (x + 33) = (x + 3)^3 \\ &\hspace{6.5em} \text{(squaring)} \\[.5em] &\hspace{4em}\Leftrightarrow 5x + 165 = x^2 + 6x + 9 \\[.5em] &\hspace{4em}\Leftrightarrow x^2 + x – 156 = 0 \\[.5em] &\hspace{4em}\Leftrightarrow (x + 13)(x – 12) = 0 \\[.5em] &\hspace{4em}\Leftrightarrow x + 13 = 0 \quad \text{ or } \quad x – 12 = 0 \\[.5em] &\hspace{4em}\Leftrightarrow \boldsymbol{x = -13} \quad \text{ or } \quad \boldsymbol{ x = 12 } \end{aligned} \]
\[ \begin{aligned} \sqrt{ 5 (x + 33) } = x + 3 &\Leftrightarrow 5 (x + 33) = (x + 3)^3 \quad \text{(squaring)} \\[.5em] &\Leftrightarrow 5x + 165 = x^2 + 6x + 9 \\[.5em] &\Leftrightarrow x^2 + x – 156 = 0 \\[.5em] &\Leftrightarrow (x + 13)(x – 12) = 0 \\[.5em] &\Leftrightarrow x + 13 = 0 \quad \text{ or } \quad x – 12 = 0 \\[.5em] &\Leftrightarrow \boldsymbol{x = -13} \quad \text{ or } \quad \boldsymbol{ x = 12 } \end{aligned} \]