In the triangle \( \triangle ABC \) we have that \( \overline{AB} = 6 \, cm \), \( \overline{DC} = 2 \sqrt{5} \, cm \), and \( \overline{DB} = 2 \, cm \). Therefore, the area of the triangle \( \triangle ABC \) is:
-
\( 2 \; cm^2 \)
-
\( 4 \sqrt{5 - 1} \; cm^2 \)
-
\( 6 \; cm^2 \)
-
\( 8 \; cm^2 \)
-
\( 4 \left( 2 \sqrt{5 - 1} \right) \; cm^2 \)

Try to solve it before checking the answer.
-
\(8 \; cm^2 \)
The triangle \( \triangle ADC \) has base \( b = \overline{AD} \) and height \( h = \overline{CB} \). But:
Furthermore, \( h = \overline{CB} \) is a leg of the right triangle \( \triangle{DBC} \), whose hypotenuse and other leg are, respectively:
Then, according to Pythagoras’ theorem:
Hence, the area of the triangle \( \triangle ADC \) is: