In the illustration, the sum of angles \( \angle AOB \) and \( \angle COD \) is \( 55^{\circ} \), and the sum of angles \( \angle BOD \) and \( \angle AOC \) is \( 95^{\circ} \). What is the measure of angle \( \angle AOD \)?
-
\(55^{\circ} \)
-
\(65^{\circ} \)
-
\(75^{\circ} \)
-
\(85^{\circ} \)
-
\(95^{\circ} \)

Try to solve it before checking the answer.
-
\(75^{\circ} \)
Indeed; let be:
\( \alpha + \beta = 55 \hspace{4em} \boldsymbol{(1)} \)
\( \theta + \phi = 95 \hspace{4em} \boldsymbol{(2)} \)
\( \theta = \alpha + x \hspace{4em} \boldsymbol{(3)} \)
\( \phi = x + \beta \hspace{4em} \boldsymbol{(4)} \)

Replacing (3) and (4) in (2):
then,
\( 2x + ( \alpha + \beta ) = 95 \hspace{4em} \boldsymbol{(5)} \)
Replacing (1) in (5):
Finally,