Given the sequence: \( 3, \, 12, \, 48, \, 192, \, \ldots \); If \( n = 0, \, 1, \, 2, \, 3, \ldots \), then an expression describing the sequence is:
-
\( 3 \cdot 4^{n - 1} \)
-
\( 3 n \)
-
\( 3 \cdot 4^n \)
-
\( 4 n \)
-
\( 4 \cdot 3^n \)
Try to solve it before checking the answer.
-
\( 3 \cdot 4^n \)
For \( n = 0, \, 1, \, 2 \) and \( 3 \), we have:
Hence, an expression that describes, or defines, the secuence is \( \boldsymbol{ 3 \cdot 4^n } \).