Exercise 5

If \(f(x) = x (x - 1)\), then \( f(-x) \) equals to:

  1. \(f(x)\)

  2. \(-f(x)\)

  3. \(f(1 - x)\)

  4. \(f(x + 1)\)

  5. \(f(x - 1)\)

Try to solve it before checking the answer.
  1. \(f(x + 1)\)

Indeed:

\[
\begin{aligned}
f(x) &= (-x) ( (-x) – 1 )
\\[.5em]
&=
(-x) (-x -1)
\\[.5em]
&=
(-x) (-1) (x + 1)
\\[.5em]
&=
x (x + 1)
\end{aligned}
\]

On the other hand,

\[
\begin{aligned}
f(x + 1) &= (x + 1) ( (x + 1) – 1 )
\\[.5em]
&= (x + 1) x
\\[.5em]
&= x (x + 1)
\end{aligned}
\]

Then:

\[
\boldsymbol{
f(-x) = f(x + 1)
}
\]