Exercise 59

The expression \( (x + b)^{-2} \div (x + b)^{-5} \)   equals:

  1. \( (x + b)^{-3} \)

  2. \( (x + b) \)

  3. \( (x + b)^3 \)

  4. \( (x + b)^{-7} \)

  5. \( (x + b)^7 \)

Try to solve it before checking the answer.
  1. \( (x + b)^3 \)

\[ \begin{aligned} (x + b)^{-2} \div (x + b)^{-5} &= \frac{ (x + b)^{-2} }{ (x + b)^{-5} } \\[2em] &= (x + b)^{ -2 – (-5) } \\[2em] &= (x + b)^{-2 + 5} \\[2em] &= \boldsymbol{ (x + b)^3 } \end{aligned} \]