Exercise 64
The exponent of the resulting power after reducing the expression \( 2^{2^2} \cdot 2^{ 2^{ 2^2 } } \cdot \left( 2^3 \right)^{3^3} \) to its simplest form is:
-
117
-
101
-
113
-
107
-
105
Try to solve it before checking the answer.
-
101
According power rules, we have:
\[ \begin{aligned} 2^{2^2} \cdot 2^{ 2^{ 2^2 } } \cdot \left( 2^3 \right)^{3^3} &= 2^4 \cdot 2^{2^4} \cdot \left( 2^3\right)^{27} \\[2em] &= 2^4 \cdot 2^{16} \cdot 2^{81} \\[2em] &= 2^{ 4 + 16 + 81 } = 2^{101} \end{aligned} \]Hence, the resulting exponent is 101.