Exercise 68

In the figure, \( \overline{AO} = 4 \). What is the area of the shaded region?

  1. \( \pi \)

  2. \( 3\pi \)

  3. \( 2\pi \)

  4. \( 6\pi \)

  5. \( 4\pi \)

Try to solve it before checking the answer.
  1. \( 4\pi \)

Indeed; let be:

  • \( A_{so} \): area of the shaded region.
  • \(r\): radius of the semicircle.
  • \(r’\): radius of the inner circle.
  • \( A_{sc} \): area of the semicircle.
  • \( A_{ci} \): area of the inner circle.

We have,

\[ r= 4 \quad \text{ y } r’ = 2 \]

Moreover,

\[ \begin{aligned} A_{so} &= A_{sc} – A_{ci} \\[2em] &= \frac{\pi r^2}{2} – \pi r’^2 \\[2em] &= \frac{4^2 \pi}{2} – 2^2 \pi \\[2em] &= 8\pi – 4\pi = \boldsymbol{4\pi} \end{aligned} \]