Evaluate expressions 1 through 9.
-
\[
\sqrt{(-5)^2}
\]
-
\[
\sqrt[3]{-0.027}
\]
-
\[
(0.16)^{-1/2}
\]
-
\[
(32)^{-2/5}
\]
-
\[
\left( -\frac{8}{27} \right)^{-1/3}
\]
-
\[
(0.0016)^{-3.4}
\]
-
\[
5^{2/7}5^{5/7}
\]
-
\[
(125)^{-2/3} \div (81)^{1/4}
\]
-
\[
\left[ (243)^{-4/5}(64)^{2/3} \right]^{1/4}
\]
For exercises 10 through 14, simplify each expression, ensuring the final result contains no negative exponents.
-
\[
\left(-2a^{-3}b \right)^2 \left(3a^2b^{-1} \right)^3
\]
-
\[
\left( \frac{ 3x^2 }{ y^3 } \right)^2 \left( \frac{ -2x^2 }{ 3y } \right)^{-2}
\]
-
\[
\frac{ \left( x^{-3} y^2 \right)^3 }{ \left( x^3 y^{-2} \right)^2 }
\]
-
\[
\frac{
\left( 32 a^{15} c^{-5} \right)^{1/5}
}{
\left( -27 a^6 c^{-3} \right)^{1/3}
}
\]
-
\[
\left( \frac{ x^{-2} y^3 }{ x^4 y^{-3} } \right)^{- 1/2} \left( \frac{ x^4 y^{-4} }{ x y^2 } \right)^{- 1/3}
\]
For exercises 15 through 25, simplify the expressions and rationalize the denominators as necessary.
-
\[
5\sqrt{20}-3\sqrt{45}+\frac{\sqrt{80}}{2}
\]
-
\[
\sqrt{243}-\sqrt{63}+\sqrt{175}-2\sqrt{75}
\]
-
\[
\frac{\sqrt{48}+\sqrt{75}}{-\sqrt{81}}
\]
-
\[
\frac{\sqrt{2}}{\sqrt{72}-\sqrt{8}+\sqrt{50}}
\]
-
\[
\sqrt[3]{1,080} – \sqrt[3]{625} + \sqrt[3]{40}
\]
-
\[
\sqrt[3]{-375} – \sqrt[3]{-24} – 4 \sqrt[3]{-81}
\]
-
\[
\frac{56}{\sqrt{7}}-6\sqrt{28}+\frac{\sqrt{343}}{7}
\]
-
\[
\sqrt{75}-3\sqrt{\frac{4}{3}}+\sqrt{48}
\]
-
\[
\sqrt{\frac{3}{8}}-\sqrt{\frac{2}{3}}-\frac{\sqrt{24}}{3}
\]
-
\[
\sqrt{\frac{1}{12}}-\sqrt{\frac{1}{3}}+\sqrt{\frac{3}{4}}
\]
-
\[
\sqrt[3]{ \frac{1}{4} } + \sqrt[3]{ \frac{1}{32} } – \sqrt[3]{ \frac{2}{27} }
\]
Simplify the expressions in exercises 26 and 27.
-
\[
\frac{
2^{n – 2} – 2^{n – 1} + 2^n
}{
2^{n + 2} – 2^{n + 1} + 2^n
}
\]
-
\[
\frac{
12^n \times 225^{n / 2} \times 35^{2n}
}{
49^n \times 16^{n/4} \times 27^{ 2n/3 }
}
\]
For exercises 28, 29 and 30, find the value of \(\boldsymbol{n}\).
-
\[
5\sqrt{5}\sqrt[3]{25}=5^n
\]
-
\[
\sqrt{\sqrt[5]{3}}=3^n
\]
-
\[
\sqrt[n]{ \sqrt[n]{ 5 } } = 5^{1/9}
\]