For exercises 1 through 16, use the Special Product Formulas to find each product.
-
\[
\left( 2x+\sqrt{5} \right)\left( 2x-\sqrt{5} \right)
\]
-
\[
\left( 2\sqrt{x}+\sqrt{y} \right)\left( 2\sqrt{x}-\sqrt{y} \right)
\]
-
\[
\left( 3x^2+4y^3\right)\left( 3x^2-4y^3 \right)
\]
-
\[
\left( \sqrt{h+1}+1 \right) \left( \sqrt{h+1}-1 \right)
\]
-
\[
\left( \sqrt{x}+ \frac{1}{y} \right) \left( \sqrt{x} – \frac{1}{y} \right)
\]
-
\[
(a+b+c)(a+b-c)
\]
-
\[
(4x+5)^2
\]
-
\[
(2x-5y)^2
\]
-
\[
\left( x-x^{-1} \right)^2
\]
-
\[
\left( x^3-x^{-3} \right)^2
\]
-
\[
(4x+y)^3
\]
-
\[
\left( a^2 + b^2\right)^3
\]
-
\[
\left( x^2-y \right)^3
\]
-
\[
\left( \sqrt[3]{x}+\sqrt[3]{y} \right)^3
\]
-
\[
(x-5)^2(x+5)^2
\]
-
\[
(2x-y)(2x+y)\left( 4x^2+y^2 \right)
\]
For exercises 17 through 56, factorize the expression.
-
\[
7x^3-63x^2
\]
-
\[
8x^2y^2z^3-24xy^3z^2-4x^3y^4z^3
\]
-
\[
x^3-2x^2-4x+8
\]
-
\[
4y^2+16y+12xy+48x
\]
-
\[
x^2y^2-y^2-4x+4
\]
-
\[
2a^2x-5a^2y+15by-6bx
\]
-
\[
x^2+2x-48
\]
-
\[
x^2-4x-5
\]
-
\[
y^2+28y-29
\]
-
\[
x^2+15x-216
\]
-
\[
x^4-2x^2-80
\]
-
\[
a^2b^2+ab-12
\]
-
\[
3x^2 + 7x + 4
\]
-
\[
5y^2 + 10y – 75
\]
-
\[
5a^2x^2 + 4ax – 12
\]
-
\[
9x^2 – 15x – 50
\]
-
\[
4x^2y^2 + 11xy^2 + 6y^2
\]
-
\[
25x^4 – 10x^2 + 1
\]
-
\[
25x^2 – 36y^4
\]
-
\[
63x^4 – 7x^2
\]
-
\[
45x^2y^2 – 5x^4
\]
-
\[
\frac{x^2}{36} – \frac{y^2}{25}
\]
-
\[
16x^{2n} – \frac{1}{49}
\]
-
\[
(a – b)^2 – 9
\]
-
\[
(a + b)^2 – (a – b)^2
\]
-
\[
(x – 1)^2 – (y – 2)^2
\]
-
\[
x^2 – y^2 – 6y – 9
\]
-
\[
9(a – b)^2 – 4(a + b)^2
\]
-
\[
a^4 – 2a^2 + 1
\]
-
\[
16x^2 – 24xy + 9y^2
\]
-
\[
400x^4+ 40x^2 + 1
\]
-
\[
\frac{x^2}{9} + \frac{2x}{3} + 1
\]
-
\[
\frac{4x^2}{25} – \frac{x}{5} + \frac{1}{16}
\]
-
\[
8x^3- y^3
\]
-
\[
27a^3 + 64b^3
\]
-
\[
5x^3y^3 + 5
\]
-
\[
x^5- 125x^2
\]
-
\[
(x + y)^3 – 1
\]
-
\[
(x – y)^3 – 8
\]
-
\[
(x + 1)^3 – (x – 2)^3
\]
For exercises 57 through 68, simplify the given fraction.
-
\[
\frac{60a^3b^2-45a^2b}{15a^2b}
\]
-
\[
\frac{x^2-3x}{3-x}
\]
-
\[
\frac{a^2-1}{a+1}
\]
-
\[
\frac{x^2-x-20}{x^2+2x-8}
\]
-
\[
\frac{2x^2+x-6}{2x-3}
\]
-
\[
\frac{x^2+x-2}{2x^2+6x+4}
\]
-
\[
\frac{x^2-y^2}{x^2+2xy+y^2}
\]
-
\[
\frac{x^2-4xy+4y^2}{x^3-8y^3}
\]
-
\[
\frac{(3-a)^2}{27-a^3}
\]
-
\[
\frac{x^3+1}{x^4-x^3+x-1}
\]
-
\[
\frac{y+8y^2+16y^3}{6y^2+25y^3+4y^4}
\]
-
\[
\frac{x^2-y^2}{x^2-6y-xy+6x}
\]
For exercises 69 through 80, rationalize the denominator.
-
\[
\frac{2}{1-\sqrt{2}}
\]
-
\[
\frac{h}{\sqrt{3+h}-\sqrt{3}}
\]
-
\[
\frac{2a}{\sqrt{a+1}-\sqrt{a-1}}
\]
-
\[
\frac{3\sqrt{2}}{7\sqrt{2}-6\sqrt{3}}
\]
-
\[
\frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+2\sqrt{a}}
\]
-
\[
\frac{5}{\sqrt{x-3}-\sqrt{x-13}}
\]
-
\[
\frac{3}{\sqrt[3]{7}+\sqrt[3]{2}}
\]
-
\[
\frac{16x-2}{2\sqrt[3]{x}-1}
\]
-
\[
\frac{70x-16}{2\sqrt[3]{x-1}+3\sqrt[3]{x}}
\]
-
\[
\frac{3x-9y}{\sqrt[3]{x^2}+\sqrt[3]{3xy}+\sqrt[3]{9y^2}}
\]
-
\[
\frac{8-x}{\sqrt{2-\sqrt[3]{x}}}
\]
-
\[
\frac{2x-1}{\sqrt{2\sqrt{x}+\sqrt{2}}}
\]
For exercises 81 through 83, rationalize the numerator.
-
\[
\frac{3+\sqrt{5}}{4}
\]
-
\[
\frac{\sqrt{a+2}-\sqrt{a}}{2}
\]
-
\[
\frac{\sqrt{a-1+h}-\sqrt{a-1}}{h}
\]
For exercises 84 through 104, perform the given operations and simplify.
-
\[
\frac{3a}{a+1} + \frac{2a}{a-1}
\]
-
\[
\frac{x+y}{x-y} – \frac{x-y}{x+y}
\]
-
\[
\frac{12}{x^2-9} – \frac{2}{x-3} + 1
\]
-
\[
\frac{x-2}{x^2-x-2} – \frac{2}{x^2-1}
\]
-
\[
\frac{1}{x+1} + \frac{2}{x-1} – \frac{1}{x^2-1}
\]
-
\[
\frac{x+5}{x^2+2x+1} + \frac{x}{x^2-4x-5} + \frac{1}{x-5}
\]
\[
\begin{aligned}
\frac{x+5}{x^2+2x+1} &+ \frac{x}{x^2-4x-5}
\\[1em]
&+ \frac{1}{x-5}
\end{aligned}
\]
-
\[
\frac{x}{x^2-x-2} – \frac{6}{x^2+5x-14} – \frac{1}{x^2+8x+7}
\]
\[
\begin{aligned}
\frac{x}{x^2-x-2} &- \frac{6}{x^2+5x-14}
\\[1em]
&- \frac{1}{x^2+8x+7}
\end{aligned}
\]
-
\[
\frac{x^2}{y^2-x^2} \times \frac{xy-x^2}{xy}
\]
-
\[
\frac{x^2+4x}{3x-2} \times \frac{9x^2-4}{x^2-16}
\]
-
\[
\frac{x^3-8}{a^3-1} \times \frac{a^2+a+1}{x^2+2x+4}
\]
-
\[
\begin{aligned}
\frac{ x^2 + xy – 2y^2 }{ x^2 – 2xy – 8 y^2 }
&\times
\frac{ x^2 + 2 xy }{ x^2 + 4 xy}
\\[1em]
&\times
\frac{ x^2 – 16 y^2 }{ x + 2y}
\end{aligned}
\]
\[
\frac{ x^2 + xy – 2y^2 }{ x^2 – 2xy – 8 y^2 }
\times
\frac{ x^2 + 2 xy }{ x^2 + 4 xy}
\times
\frac{ x^2 – 16 y^2 }{ x + 2y}
\]
-
\[
\frac{a^2-ab-6b^2}{b^2+ab} \div \frac{a^2-4b^2}{a^2+ab}
\]
-
\[
\frac{x^4-x}{x^2+6x+8} \div \frac{2x^2-x-1}{2x^2+9x+4}
\]
-
\[
\frac{25x^3-x}{25x^2-10x+1} \div \frac{6x^2+13x+6}{15x^2+7x-2}
\]
\[
\begin{aligned}
&\frac{25x^3-x}{25x^2-10x+1}
\\[1em]
&\hspace{3em} \div \frac{6x^2+13x+6}{15x^2+7x-2}
\end{aligned}
\]
-
\[
\left( \frac{x+1}{3x-3} \times \frac{6x-6}{2x+4} \right) \div \frac{x^2+x}{x^2+x-2}
\]
\[
\begin{aligned}
&\left( \frac{x+1}{3x-3} \times \frac{6x-6}{2x+4} \right)
\\[1em]
&\hspace{3em}
\div \frac{x^2+x}{x^2+x-2}
\end{aligned}
\]
-
\[
\frac{3x^2+3}{2x-4} \div \left( \frac{3x+6}{2x-6} \times \frac{x^3+x}{3x-6} \right)
\]
\[
\begin{aligned}
&\frac{3x^2+3}{2x-4}
\\[1em]
&\hspace{2em} \div \left( \frac{3x+6}{2x-6} \times \frac{x^3+x}{3x-6} \right)
\end{aligned}
\]
-
\[
\left( 1-\frac{a^3}{b^3} \right) \left( b+\frac{ab}{b-a} \right)
\]
-
\[
\left( x+\frac{4x^2+20x}{x^2-25} \right) \left( x+2-\frac{28}{x-1} \right)
\]
\[
\begin{aligned}
&\left( x+\frac{4x^2+20x}{x^2-25} \right)
\\[1em]
&\hspace{2em} \times \left( x+2-\frac{28}{x-1} \right)
\end{aligned}
\]
-
\[
\left( \frac{x^2}{x^2-y^2}-1 \right) \left( \frac{x}{y}-1 \right) \left( \frac{y}{x}+1 \right)
\]
\[
\begin{aligned}
&\left( \frac{x^2}{x^2-y^2}-1 \right) \left( \frac{x}{y}-1 \right)
\\[1em]
&\hspace{2em} \times \left( \frac{y}{x}+1 \right)
\end{aligned}
\]
-
\[
\left( \frac{x^2}{x+1} -x+1 \right) \div \left( \frac{2}{x^2-1} +1 \right)
\]
\[
\begin{aligned}
&\left( \frac{x^2}{x+1} -x+1 \right)
\\[1em]
&\hspace{2em}\div \left( \frac{2}{x^2-1} +1 \right)
\end{aligned}
\]
-
\[
\left( \frac{2a+1}{a^2+2} -a \right) \div \left( \frac{a+1}{a} -a^2-1 \right)
\]
\[
\begin{aligned}
&\left( \frac{2a+1}{a^2+2} -a \right)
\\[1em]
&\hspace{2em} \div \left( \frac{a+1}{a} -a^2-1 \right)
\end{aligned}
\]
Simplify the given compound fractions.
-
\[
\cfrac{ \cfrac{1}{x} -x^2 }{ \cfrac{1}{x} -1 }
\]
-
\[
\cfrac{ \cfrac{a}{b^2} – \cfrac{b}{a^2} } { \cfrac{1}{b^2} – \cfrac{1}{a^2} }
\]
-
\[
a- \cfrac{b} { \cfrac{a}{b} + \cfrac{b}{a} }
\]
-
\[
1- \cfrac{1}{ 1- \cfrac{1} { 1- \cfrac{1}{x^2} } }
\]
-
\[
\cfrac{ 1- \cfrac{1}{a-2} }{ a+3 – \cfrac{24}{a+1} }
\]