In exercises 1 through 9, solve the equation.
-
\[
\mid x – 5 \mid = 4
\]
-
\[
\mid 2x + 1 \mid = x + 3
\]
-
\[
\mid x – 2 \mid = 3x – 9
\]
-
\[
\mid x-2 \mid = 9-3x
\]
-
\[
\mid x + 4 \mid = \mid 2 – x \mid
\]
-
\[
\mid x – 1 \mid = \mid 2x -4 \mid
\]
-
\[
\left| \frac{3x-2}{2} \right| = \mid x-4 \mid
\]
-
\[
\left| 5-\frac{2}{x} \right| = 3
\]
-
\[
\left| \frac{x-5}{2x-3} \right| = 1
\]
In exercises 10 through 26, solve the inequation.
-
\[
\mid x – 4 \mid < 3
\]
-
\[
\mid 3x + 1 \mid < 15
\]
-
\[
\left| \frac{2x}{3} -1 \right| < 2
\]
-
\[
\mid -3x – 2 \mid \leq 4
\]
-
\[
\mid 5x + 2 \mid \geq 1
\]
-
\[
\mid -4x – 3 \mid > 1
\]
-
\[
\left| \frac{2x}{5}-2 \right| \geq 3
\]
-
\[
\mid x^2 – 5 \mid \geq 4
\]
-
\[
1 < \mid x \mid \leq 4
\]
-
\[
0 < \mid x – 3 \mid < 1
\]
-
\[
\mid x – 1 \mid < \mid x \mid
\]
-
\[
\left| \frac{3-2x}{1+x} \right| \leq 1
\]
-
\[
\left| \frac{1}{1-2x} \right| \geq \frac{1}{3}
\]
-
\[
\mid x – 1 \mid + \mid x – 2 \mid > 1
\]
-
\[
\mid x – 1 \mid + \mid x + 1 \mid \leq 4
\]
-
\[
\left| \frac{1}{2+x} \right| < \frac{1}{\mid x \mid}
\]
-
\[
\mid 3x – 5 \mid \leq \mid 2x – 1 \mid + \mid 2x + 3 \mid
\]
In exercises 27 through 29, find a number \(\boldsymbol{M}\) that satisfies the given inequality.
-
\[
\mid x + 2 \mid < 1 \Rightarrow \mid x^3 -x^2 + 2x + 1 \mid < M
\]
\[
\begin{aligned}
&\mid x + 2 \mid < 1
\\[1em]
&\hspace{2em} \Rightarrow \mid x^3 -x^2 + 2x + 1 \mid < M
\end{aligned}
\]
-
\[
\mid x – 3 \mid < 1/2 \Rightarrow \frac{\mid x+2 \mid}{\mid x-2 \mid} < M
\]
\[
\begin{aligned}
&\mid x – 3 \mid < 1/2
\\[1em]
&\hspace{5em}\Rightarrow \frac{\mid x+2 \mid}{\mid x-2 \mid} < M
\end{aligned}
\]
-
\[
\mid x – 1/4 \mid < 1/8 \Rightarrow \frac{\mid 16x+4 \mid}{1+x^2} < M
\]
\[
\begin{aligned}
&\mid x – 1/4 \mid < 1/8
\\[1em]
&\hspace{5em}\Rightarrow \frac{\mid 16x+4 \mid}{1+x^2} < M
\end{aligned}
\]
-
Prove:
-
\[
\mid x – y \mid \geq \mid x \mid – \mid y \mid
\]
Suggestion: Apply the triangle inequality to \(x = (x – y) + y\).
-
\[
\mid x – y \mid \geq \mid y \mid – \mid x \mid
\]
-
\[
\left| \mid x \mid – \mid y \mid \right| \leq \mid x – y \mid
\]