-
Sketch the following graphs using the graph of \(f(x)=x^3\):
-
\[
y = x^3 – 3
\]
-
\[
y = (x -1)^3
\]
-
\[
y = -x^3 + 1
\]
-
\[
y = -(x-1)^3 + 1
\]
-
Sketch the following graphs using the graph of \(f(x)=\cfrac{1}{x}\):
-
\[
y = \frac{1}{x} -2
\]
-
\[
y = \frac{1}{x-2}
\]
-
\[
y = – \frac{1}{x}
\]
-
\[
y = \frac{1}{x-2} +5
\]
-
Sketch the following graphs using the graph of \( y = \lfloor x \rfloor \):
-
\[
y = – \lfloor x \rfloor
\]
-
\[
y = \lfloor 2x \rfloor
\]
-
\[
y = \frac{1}{2} \lfloor x \rfloor
\]
-
Using the translation and reflection techniques, and the graph of \(y=\sin x\), graph the function \(y=1- \sin(x – \frac{\pi}{2})\).
-
Considering the graph of \(y= \cos x\):
-
sketch the graph of \(y = -3\cos 4x\) using transformation techniques.
-
find the period of \(y = -3\cos 4x\).
In the exercises 6, 7 and 8, find \(\boldsymbol{f+g,\; f-g,\; fg}\) and \(\boldsymbol{f/g}\), with their domains.
-
\[
f(x) = \cfrac{1}{1-x},\quad g(x) = \sqrt{2-x}
\]
-
\[
f(x) = \sqrt{16-x^2},\quad g(x) = \sqrt{x^2-4}
\]
\[
\begin{aligned}
&f(x) = \sqrt{16-x^2},
\\[1em]
&g(x) = \sqrt{x^2-4}
\end{aligned}
\]
-
\[
f(x) = \cfrac{1}{\sqrt{4-x^2}},\quad g(x) = \sqrt[3]{x}
\]
In the exercises 9, 10 and 11, find the domain of the function.
-
\[
f(x) = \sqrt{4-x} + \sqrt{x-4}
\]
-
\[
f(x) = \sqrt{-x} + \cfrac{1}{\sqrt{x+2}}
\]
-
\[
g(x) = \cfrac{ \sqrt{3-x} + \sqrt{x+2} }{ x^2-9 }
\]
In exercises 12 through 16, find \(\boldsymbol{f \circ g,\,g \circ f,\,f \circ f}\) and \(\boldsymbol{g \circ g}\), with their domains.
-
\[
f(x) = x^2-1,\; g(x) = \sqrt{x}
\]
-
\[
f(x) = x^2,\; g(x) = \sqrt{x-4}
\]
-
\[
f(x) = x^2-x,\; g(x) = \cfrac{1}{x}
\]
-
\[
f(x) = \cfrac{1}{1-x},\; g(x) = \sqrt[3]{x}
\]
-
\[
f(x) = \sqrt{x^2-1},\; g(x) = \sqrt{1-x}
\]
In the exercises 17 and 18, find \(\boldsymbol{f \circ g \circ h}\).
-
\(f(x) = \sqrt{x}\), \(g(x) = \cfrac{1}{x}\), \(h(x) = x^2-1\)
-
\(f(x) = \sqrt[3]{x}\), \(g(x) = \cfrac{x}{1+x}\), \(h(x) = x^2-x\)
-
If \(f(x)=\cfrac{1}{1-x}\), find \(f \circ f \circ f\) with its domain.
In exercises 20 through 23, find two functions \(\boldsymbol{f}\) and \(\boldsymbol{g}\) such that \(\boldsymbol{F=f \circ g}\)}.
-
\[
F(x) = \cfrac{1}{1+x}
\]
-
\[
F(x) = -3 + \sqrt{x}
\]
-
\[
F(x) = \sqrt[3]{ (2x-1)^2 }
\]
-
\[
F(x) = \cfrac{1}{ \sqrt{ x^2 – x + 1 } }
\]
In exercises 24 through 26, find \(\boldsymbol{f,\, g}\) and \(\boldsymbol{h}\) such that:
\[
\boldsymbol{
F= f \circ g \circ h
}
\]
-
\[
F(x) = \frac{x^2}{1+x^2}
\]
-
\[
F(x) = \sqrt[3]{ x^2 + \mid x \mid + 1 }
\]
-
\[
F(x) = \sqrt[4]{ \sqrt{x} – 1 }
\]
-
If \(f(x)=2x+3\) and \(h(x)=2x^2-4x+5\) find a function \(g\) such that \(f \circ g=h\).
-
If \(f(x)=x-3\) and \(h(x)=\cfrac{1}{x-2}\) find a function \(g\) such that \(g \circ f= h\).