In exercises 1 through 8, find the value of the expression without using tables or calculator.
-
\[
\log_2 \left( \frac{1}{64} \right)
\]
-
\[
\log_{1/2} \left( \frac{1}{16} \right)
\]
-
\[
\log_{1/3} (81)
\]
-
\[
\log_{100} (0.1)
\]
-
\[
\mathrm{e}^{\ln 3}
\]
-
\[
\mathrm{e}^{2 \ln 3}
\]
-
\[
\mathrm{e}^{(\ln 3)/2}
\]
-
\[
\mathrm{e}^{3 \ln {2} – 2 \ln 3}
\]
In exercises 9 through 19, solve the given equation.
-
\[
\log_x (25) = \frac{1}{2}
\]
-
\[
\log_4 \left( x^2 – 6x \right) = 2
\]
-
\[
\log x + \log (2x – 8) = 1
\]
-
\[
-3 \ln x = a
\]
-
\[
\frac{k}{20} – \ln x = 1
\]
-
\[
4 \ln x = \frac{1}{2} \ln x + 7
\]
-
\[
3 \ln (\ln x) = -12
\]
-
\[
3 \mathrm{e}^{-1.2x} = 14
\]
-
\[
3^{x-1} = \mathrm{e^3}
\]
-
\[
3^x 2^{3x} = 64
\]
-
\[
\left( 3^x \right)^2 = 16\sqrt{2^x}
\]
In exercises 20 through 27, use translation and reflection techniques to sketch the graph of the given functions.
-
\[
y = \ln (x – 2 )
\]
-
\[
y=\ln (-x )
\]
-
\[
y = \ln (x + 3)
\]
-
\[
y = 4 – \ln x
\]
-
\[
y = 4 – \ln (x + 3)
\]
-
\[
y = 2 – \ln {\mid x \mid}
\]
-
\[
y = 3 + \log x
\]
-
\[
y = 3 + \log (x + 3)
\]
In exercises 28 through 31, write the expression in terms of the logarithms of (\boldsymbol{a}\), \(\boldsymbol{b}\) and \(\boldsymbol{c}\).
-
\[
\log { \cfrac{a^2 b}{c} }
\]
-
\[
\log { \cfrac{\sqrt{b}}{a^2 c^3} }
\]
-
\[
\ln \left( \cfrac{1}{a} \sqrt{ \cfrac{c^3}{b} } \right)
\]
-
\[
\ln \sqrt[5]{ \cfrac{a^2}{b c^4} }
\]
In the exercises 32, 33 and 34, rewrite the expression using only one logarithm of coefficient 1.
-
\[
3\ln x + \ln y – 2 \ln z
\]
-
\[
2 \log a + \log b – 3( \log z + \log x)
\]
-
\[
\frac{3}{4} \ln a + 3 \ln b -\frac{3}{2} \ln c
\]
-
Express each of the following functions with the form \(y=A\mathrm{e}^{kt}\):
-
\[
y
=
(5)3^{0.5t}
\]
-
\[
y
=
6(1.04)^t
\]